# SICP - Solution: Exercise 1.10

## Oct 1, 2018 21:06 · 1733 words · 9 minute read

**Exercise 1.10**

The following procedure computes a mathematical function called Ackermann’s function.

```
(define (A x y)
(cond ((= y 0) 0)
((= x 0) (* 2 y))
((= y 1) 2)
(else (A (- x 1)
(A x (- y 1))))))
```

What are the values of the following expressions?

```
(A 1 10)
(A 2 4)
(A 3 3)
```

Consider the following procedures, where A is the procedure defined above:

```
(define (f n) (A 0 n))
(define (g n) (A 1 n))
(define (h n) (A 2 n))
(define (k n) (* 5 n n))
```

Give concise mathematical definitions for the functions computed by the procedures `f`

, `g`

, and `h`

for positive integer values of `n`

. For example, `(k n)`

computes $5n^2$.

**Solution**

All the following expansion has been painstakingly made by hand.

```
(A 1 10)
(A 0 (A 1 9))
(A 0 (A 0 (A 1 8)))
(A 0 (A 0 (A 0 (A 1 7))))
(A 0 (A 0 (A 0 (A 0 (A 1 6)))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 1 5))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 4)))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 3))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 2)))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 1))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 2)))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 4))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 8)))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 16))))))
(A 0 (A 0 (A 0 (A 0 (A 0 32)))))
(A 0 (A 0 (A 0 (A 0 64))))
(A 0 (A 0 (A 0 128)))
(A 0 (A 0 256))
(A 0 512)
1024
```

```
(A 2 4)
(A 1 (A 2 3))
(A 1 (A 1 (A 2 2)))
(A 1 (A 1 (A 1 (A 2 1))))
(A 1 (A 1 (A 1 2)))
(A 1 (A 1 (A 0 (A 1 1))))
(A 1 (A 1 (A 0 2)))
(A 1 (A 1 4))
(A 1 (A 0 (A 1 3)))
(A 1 (A 0 (A 0 (A 1 2))))
(A 1 (A 0 (A 0 (A 0 (A 1 1)))))
(A 1 (A 0 (A 0 (A 0 2))))
(A 1 (A 0 (A 0 4)))
(A 1 (A 0 8))
(A 1 16)
(A 0 (A 1 15))
(A 0 (A 0 (A 1 14)))
(A 0 (A 0 (A 0 (A 1 13))))
(A 0 (A 0 (A 0 (A 0 (A 1 12)))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 1 11))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 10)))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 9))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 8)))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 7))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 6)))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 5))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 4)))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 3))))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 2)))))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 1))))))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 2)))))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 4))))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 8)))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 16))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 32)))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 64))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 128)))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 256))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 512)))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 1024))))))
(A 0 (A 0 (A 0 (A 0 (A 0 2048)))))
(A 0 (A 0 (A 0 (A 0 4096))))
(A 0 (A 0 (A 0 8192)))
(A 0 (A 0 16384))
(A 0 32768)
65536
```

```
(A 3 3)
(A 2 (A 3 2))
(A 2 (A 2 (A 3 1)))
(A 2 (A 2 2))
(A 2 (A 1 (A 2 1)))
(A 2 (A 1 2))
(A 2 (A 0 (A 1 1)))
(A 2 (A 0 2))
(A 2 4)
(A 1 (A 2 3))
(A 1 (A 1 (A 2 2)))
(A 1 (A 1 (A 1 (A 2 1))))
(A 1 (A 1 (A 1 2)))
(A 1 (A 1 (A 0 (A 1 1))))
(A 1 (A 1 (A 0 2)))
(A 1 (A 1 4))
(A 1 (A 0 (A 1 3)))
(A 1 (A 0 (A 0 (A 1 2))))
(A 1 (A 0 (A 0 (A 0 (A 1 1)))))
(A 1 (A 0 (A 0 (A 0 2))))
(A 1 (A 0 (A 0 4)))
(A 1 (A 0 8))
(A 1 16)
(A 0 (A 1 15))
(A 0 (A 0 (A 1 14)))
(A 0 (A 0 (A 0 (A 1 13))))
(A 0 (A 0 (A 0 (A 0 (A 1 12)))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 1 11))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 10)))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 9))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 8)))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 7))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 6)))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 5))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 4)))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 3))))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 2)))))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 1))))))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 2)))))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 4))))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 8)))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 16))))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 32)))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 64))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 128)))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 256))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 512)))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 1024))))))
(A 0 (A 0 (A 0 (A 0 (A 0 2048)))))
(A 0 (A 0 (A 0 (A 0 4096))))
(A 0 (A 0 (A 0 8192)))
(A 0 (A 0 16384))
(A 0 32768)
65536
```

${2^{16}} = 65536$

```
(define (f n) (A 0 n))
(define (g n) (A 1 n))
(define (h n) (A 2 n))
```

$f(n) = 2n$

$g(n) = 2^{n}$

$h(n) = 2^{h(n-1)}$

Using the tracing function in DrRacket would by more efficient than doing all by hand, but not as fun.